Hàm ý Năng_lượng_chân_không

Năng lượng chân không có một số hệ quả. Năm 1948, các nhà vật lý người Hà Lan Hendrik BG CasimirDirk Polder dự đoán sự tồn tại của một lực hấp dẫn nhỏ giữa các tấm kim loại được đặt gần nhau do sự cộng hưởng trong năng lượng chân không trong không gian giữa chúng. Điều này hiện được gọi là hiệu ứng Casimir và từ đó đã được kiểm chứng bằng thực nghiệm. Do đó, người ta tin rằng năng lượng chân không là "thực" theo nghĩa tương tự rằng các vật thể khái niệm quen thuộc hơn như điện tử, từ trường, v.v., là có thật. Tuy nhiên, giải thích thay thế cho hiệu ứng Casimir đã được đề xuất.[6] Các dự đoán khác là khó để xác minh. Dao động chân không luôn được tạo ra như các cặp phản hạt. Việc tạo ra các hạt ảo này gần chân trời sự kiện của lỗ đen đã được nhà vật lý Stephen Hawking đưa ra giả thuyết là một cơ chế cho sự "bốc hơi" cuối cùng của các lỗ đen.[7] Nếu một trong hai cặp bị kéo vào lỗ đen trước đó, thì hạt kia trở thành "thực" và năng lượng / khối lượng về cơ bản được tỏa vào không gian từ lỗ đen. Mất mát này được tích lũy và có thể dẫn đến sự biến mất của lỗ đen theo thời gian. Thời gian cần thiết phụ thuộc vào khối lượng của lỗ đen (các phương trình chỉ ra rằng lỗ đen càng nhỏ thì nó bay hơi càng nhanh) nhưng có thể theo thứ tự 10100 năm đối với các lỗ đen khối lượng Mặt Trời lớn.[7]

Năng lượng chân không cũng có những hậu quả quan trọng đối với vũ trụ học vật lý. Thuyết tương đối rộng dự đoán rằng năng lượng tương đương với khối lượng, và do đó, nếu năng lượng chân không "thực sự ở đó", thì nó sẽ tác dụng lực hấp dẫn. Về cơ bản, một năng lượng chân không khác không được dự kiến sẽ đóng góp vào hằng số vũ trụ, ảnh hưởng đến sự giãn nở của vũ trụ. Trong trường hợp đặc biệt của năng lượng chân không, thuyết tương đối rộng quy định rằng trường hấp dẫn tỷ lệ với ρ + 3p (trong đó ρ là mật độ năng lượng khối lượng và p là áp suất). Lý thuyết lượng tử của chân không quy định thêm rằng áp lực của năng lượng chân không trạng thái zero luôn luôn là âm và có độ lớn bằng ρ. Như vậy, tổng số là ρ + 3p = ρ − 3ρ = −2ρ, là một giá trị âm. Nếu thực sự trạng thái mặt đất chân không có năng lượng khác không, thì phép tính ngụ ý trường hấp dẫn với lực đẩy, làm tăng tốc độ giãn nở của vũ trụ. Tuy nhiên, năng lượng chân không là vô hạn về mặt toán học mà không cần tái chuẩn hóa, điều này dựa trên giả định rằng chúng ta chỉ có thể đo năng lượng theo nghĩa tương đối, điều này không đúng nếu chúng ta có thể quan sát nó một cách gián tiếp thông qua hằng số vũ trụ.  

Sự tồn tại của năng lượng chân không đôi khi cũng được sử dụng như là sự biện minh lý thuyết cho khả năng của các máy năng lượng tự do. Người ta đã lập luận rằng do sự đối xứng bị phá vỡ (trong QED), năng lượng tự do không vi phạm bảo tồn năng lượng, vì các định luật nhiệt động lực học chỉ áp dụng cho các hệ cân bằng. Tuy nhiên, sự đồng thuận giữa các nhà vật lý là điều này chưa được biết vì bản chất của năng lượng chân không vẫn là một vấn đề chưa được giải quyết.[8] Đặc biệt, định luật nhiệt động thứ hai không bị ảnh hưởng bởi sự tồn tại của năng lượng chân không. [cần dẫn nguồn] Tuy nhiên, trong điện động lực học ngẫu nhiên, mật độ năng lượng được coi là một trường sóng nhiễu ngẫu nhiên cổ điển bao gồm các sóng nhiễu điện từ thực truyền theo phương vị theo mọi hướng. Năng lượng trong trường sóng như vậy dường như có thể truy cập được, ví dụ, không có gì phức tạp hơn một bộ ghép hướng. [cần dẫn nguồn] Khó khăn rõ ràng nhất dường như là sự phân bố quang phổ của năng lượng, khả năng tương thích với bất biến Lorentz đòi hỏi phải có dạng Kf3, trong đó K là hằng số và f biểu thị tần số.[4][5] Theo sau đó, dòng năng lượng và động lượng trong trường sóng này chỉ trở nên có ý nghĩa ở các bước sóng cực ngắn mà công nghệ ghép hướng định hướng hiện đang thiếu. [cần dẫn nguồn]